Abstract

BackgroundAlpha-thalassemia is the most common human genetic disease worldwide. Copy number variations in the form of deletions of α-globin genes lead to α-thalassemia while duplications of α-globin genes can cause a severe phenotype in β-thalassemia carriers due to accentuation of globin chain imbalance. It is important to have simple and reliable methods to identify unknown or rare deletions and duplications in cases in which thalassemia is suspected but cannot be confirmed by multiplex gap-PCR. Here we describe a copy number variation assay to detect deletions and duplications in the α-globin gene cluster (HBA-CNV).ResultsQuantitative real-time PCR was performed using four TaqMan® assays which specifically amplify target sequences representing both the α-globin genes, the –α3.7 deletion and the HS-40 region. The copy number for each target was determined by the 2-ΔΔCq method. To validate our method, we compared the HBA-CNV method with traditional gap-PCR in 108 samples from patients referred to our laboratory for hemoglobinopathy evaluation. To determine the robustness of the four assays, we analyzed samples with and without deletions diluted to obtain different DNA concentrations. The HBA-CNV method identified the correct copy numbers in all 108 samples. All four assays showed the correct copy number within a wide range of DNA concentrations (3.2-100 ng/μL), showing that it is a robust and reliable method. By using the method in routine diagnostics of hemoglobinopathies we have also identified several deletions and duplications that are not detected with conventional gap-PCR.ConclusionsHBA-CNV is able to detect all known large deletions and duplications affecting the α-globin genes, providing a flexible and simple workflow with rapid and reliable results.

Highlights

  • Alpha-thalassemia is the most common human genetic disease worldwide

  • A variety of processes can result in Copy number variations (CNVs), including deletions, duplications and translocation during meiosis [1]

  • The α-globin gene triplications most often have no phenotypic effect, but co-inheritance of an α-globin gene triplication and β-thalassemia trait may lead to more pronounced imbalance between α- and β-globin chains and β-thalassemia intermedia [6]

Read more

Summary

Introduction

Alpha-thalassemia is the most common human genetic disease worldwide. Copy number variations in the form of deletions of α-globin genes lead to α-thalassemia while duplications of α-globin genes can cause a severe phenotype in β-thalassemia carriers due to accentuation of globin chain imbalance. We describe a copy number variation assay to detect deletions and duplications in the α-globin gene cluster (HBA-CNV). Thalassemia is one of the most common human genetic diseases worldwide and is caused by reduced or absent production of globin chains, mainly of the α- or β- globin. Reciprocal recombination during meiosis have caused the common -α3.7 and –α4.2 deletions and the α-globin gene triplications, αααanti3.7 and αααanti4.2 [5]. Deletions involving only the HS-40 region give rise to a particular category of α-thalassemia with intact but functionally inactive α-globin genes [9]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.