Abstract

An integrated strategy for the rapid and sensitive detection of deoxynivalenol in cereals was developed by combining Fe3O4 magnetic nanoparticle-modified metal organic framework-5-based magnetic solid-phase extraction and the optical fiber-based homogeneous chemiluminescence immunosensor. The hybrid magnetic material was prepared and characterized, exhibiting good enrichment capacity up to 1.68 mg/g. The competitive immunoassay-based homogeneous chemiluminescence immunosensor enabled washing-free and high-sensitivity detection of deoxynivalenol. Under optimized conditions, this immunosensor could detect deoxynivalenol as low as 46.7 pg/mL with a quantitatively linear range of 0.1 to 1000 ng/mL. The recoveries of this integrated detection strategy in rice, corn, and wheat ranged from 80.0 % to 118.2 %, 91.1 % to 116.7 %, and 80.0 % to 91.5 %, respectively, with a relative standard deviation that did not exceed 9.11 %. More importantly, it shows great consistency with the high-performance liquid chromatography-mass spectrometry in blind sample analysis. This integrated detection strategy provides a convenient approach for mycotoxins screening in cereals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call