Abstract
ABSTRACTNon-destructive, simple and fast techniques for identifying authentic palm oil and those adulterated with Sudan dyes using portable NIR spectroscopy would be very beneficial to West Africa countries and the world at large. In this study, a portable NIR spectroscopy coupled with multivariate models were developed for detecting palm oil adulteration. A total of 520 samples of palm oil were used comprising; 40 authentic samples together with 480 adulterated samples containing Sudan dyes (I, II, III, IV of 120 samples each). Multiplicative scatter correction (MSC) preprocessing technique plus Principal component analysis (PCA) was used to extract relevant spectral information which gave visible cluster trends for authentic samples and adulterated ones. The performance of Linear discriminant analysis (LDA) and Support vector machine (SVM) were compared, and SVM showed superiority over LDA. The optimised results by cross-validation revealed that MSC-PCA + SVM gave an identification rate above 95% for both calibration and prediction sets. The overall results show that portable NIR spectroscopy together with MSC-PCA + SVM model could be used successfully to identify authentic palm oils from adulterated ones. This would be useful for quality control officers and consumers to manage and control Sudan dyes adulteration in red palm oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.