Abstract

Detection of pesticide residues is important for ensuring food safety, and it has assumed increased significance. Traditional analytical methods are known for being destructive and cost- and time-intensive. In this study, depth-profiling Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was successfully used as an in situ, nondestructive, and rapid method for detecting tricyclazole residues on three metal surfaces (copper, aluminum, and iron) and subsequently, on the surfaces of fresh rice leaves and ripe husks. Four moving mirror velocities, that is, 0.32, 0.63, 0.95, and 1.90 cm s–1 were used for recording the spectra. The results indicated that the moving mirror velocity of 0.95 cm s–1 was optimal for depth profiling, and the obtained spectra showed a strong absorption band at around 1200 cm–1, corresponding to the C–N bond in tricyclazole. This band could be used for monitoring tricyclazole residues on plant surfaces. Principal component analysis confirmed the detection of tricyclazole on the basis of its spectral information. Considering the scanning depth and the thickness of the plant cuticle, FTIR-PAS can be an effective means for detecting and monitoring similar organonitrogen pesticide residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.