Abstract
The aged seeds have a significant influence on seed vigor and corn growth. Therefore, it is vital for the planting industry to identify aged seeds. In this study, hyperspectral reflectance imaging (1,000–2,000 nm) was employed for identifying aged maize seeds using seeds harvested in different years. The average spectra of the embryo side, endosperm side, and both sides were extracted. The support vector machine (SVM) algorithm was used to develop classification models based on full spectra to evaluate the potential of hyperspectral imaging for maize seed detection and using the principal component analysis (PCA) and ANOVA to reduce data dimensionality and extract feature wavelengths. The classification models achieved perfect performance using full spectra with an accuracy of 100% for the prediction set. The performance of models established with the first three principal components was similar to full spectrum models, but that of PCA loading models was worse. Compared to other spectra, the two-band ratio (1,987 nm/1,079 nm) selected by ANOVA from embryo-side spectra achieved a better classification accuracy of 95% for the prediction set. The image texture features, including histogram statistics (HS) and gray-level co-occurrence matrix (GLCM), were extracted from the two-band ratio image to establish fusion models. The results demonstrated that the two-band ratio selected from embryo-side spectra combined with image texture features achieved the classification of maize seeds harvested in different years with an accuracy of 97.5% for the prediction set. The overall results indicated that combining the two wavelengths with image texture features could detect aged maize seeds effectively. The proposed method was conducive to the development of multi-spectral detection equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.