Abstract

In sickle cell disease, the aberrant assembly of hemoglobin fibers induces changes in red blood cell morphology and stiffness, which leads to downstream symptoms of the disease. Therefore, understanding of this assembly process will be important for the treatment of sickle cell disease. By performing the highest spatiotemporal resolution measurements (55 nm at 1 Hz) of single sickle hemoglobin fiber assembly to date and combining them with a model that accounts for the multistranded structure of the fibers, we show that the rates of sickle hemoglobin addition and loss have been underestimated in the literature by at least an order of magnitude. These results reveal that the sickle hemoglobin self-assembly process is very rapid and inefficient (4% efficient versus 96% efficient based on previous analyses), where net growth is the small difference between over a million addition-loss events occurring every second.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.