Abstract

Graphene aerogel (GA) holds great potentials for versatile applications, for example, oil-water separation and piezoresistive sensing. However, GA is generally prepared via time-consuming and complicated methods. Herein, a rapid and facile approach has been proposed to fabricate GA by a two-step reduction method, i.e., hydrothermal reduction by thiourea at a mild temperature of 95 °C for 30 min followed by microwave treatment for several seconds, c.a., 4–12 s. GA was partially reduced in the first step and self-assembled into a 3D scaffold which is much more receptive to microwaves and promotes the second complete reduction by microwave treatment. By tuning the microwaving time, the GA microwaved for 10 s, that is, MGA-10 exhibits hierarchically porous microstructure, ultra-low density, and super compressibility. MGA-10 can be used as a recyclable absorbent with high absorption capacities (223 ∼ 430 g/g) towards various oils and organic solvents. Meanwhile, the high sensitivity of the electric resistance to the compressive strain enables MGA-10 promising for pressure sensor applications. The MGA-10 sensor demonstrates high sensitivity (1.112 kPa−1 at a pressure range of 0 ∼ 0.3 kPa) and excellent stability (>3000 cycles). This fabrication route paves the way to efficiently prepare highly compressible graphene aerogels for versatile applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.