Abstract

Cytosine methylation is highly conserved across vertebrate species and, as a key driver of epigenetic programming and chromatin state, plays a critical role in early embryonic development. Enzymatic modifications drive active methylation and demethylation of cytosine into 5-methylcytosine (5-mC) and subsequent oxidation of 5-mC into 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Epigenetic reprogramming is a critical period during in utero development, and maternal exposure to chemicals has the potential to reprogram the epigenome within offspring. This can potentially cause adverse outcomes such as immediate phenotypic consequences, long-term effects on adult disease susceptibility, and transgenerational effects of inherited epigenetic marks. Although bisulfite-based sequencing enables investigators to interrogate cytosine methylation at base-pair resolution, sequencing-based approaches are cost-prohibitive and, as such, preclude the ability to monitor cytosine methylation across developmental stages, multiple concentrations per chemical, and replicate embryos per treatment. Due to the ease of automated in vivo imaging, genetic manipulations, rapid ex utero development time, and husbandry during embryogenesis, zebrafish embryos continue to be used as a physiologically intact model for uncovering xenobiotic-mediated pathways that contribute to adverse outcomes during early embryonic development. Therefore, using commercially available 5-mC-specific antibodies, we describe a cost-effective strategy for rapid and efficient spatiotemporal monitoring of cytosine methylation within individual, intact zebrafish embryos by leveraging whole-mount immunohistochemistry, automated high-content imaging, and efficient data processing using programming language prior to statistical analysis. To current knowledge, this method is the first to successfully detect and quantify 5-mC levels in situ within zebrafish embryos during early development. The method enables the detection of DNA methylation within the cell mass and also has the ability to detect cytosine methylation of yolk-localized maternal mRNAs during the maternal-to-zygotic transition. Overall, this method will be useful for the rapid identification of chemicals that have the potential to disrupt cytosine methylation in situ during epigenetic reprogramming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.