Abstract

High-quality Au@ZnO core-shell nanoparticle (NP) array films were easily and efficiently fabricated through an air/water interfacial self-assembly. These materials have remarkable visible light absorption capacity and fascinating performance in photoelectrochemical (PEC) water splitting with a photocurrent density of ∼3.08 mA/cm2 at 0.4 V, which is superior to most ZnO-based photoelectrodes in studies. Additionally, the interesting PEC performance could be effectively adjusted by altering the thickness of the ZnO shell and/or the layer number of the array films. Results indicated that the bilayer film based on Au@ZnO NPs with 25 nm shell thickness displayed optimal behavior. The remarkable PEC capability could be ascribed to the enhanced light-harvesting ability of the Au@ZnO structured NPs by the SPR effect and the optimum film thickness. This work demonstrates a desirable paradigm for preparing photoelectrodes based on the synergistic effect of plasmatic NPs as the core and a visible optical absorbent and semiconductor as the shell. Moreover, this work provides a new approach for fabricating optoelectronic anode thin film devices through a self-assembly method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call