Abstract
Rhododendron decorum is a woody species with high ornamental and medical value. Herein, we introduce a novel in vitro regeneration method for R. decorum. We used flower buds to develop an efficient and rapid plant regeneration protocol. Sterile flower buds of R. decorum of a 2 cm size were used as explants to study the effects of the culture medium and plant growth regulators on the callus induction and adventitious shoot differentiation, proliferation, and rooting. According to the results, the optimal medium combination for callus induction was WPM + 1 mg/L TDZ + 0.2 mg/L NAA, and its induction rate reached 95.08%. The optimal medium combination for adventitious shoot differentiation from the callus was WPM + 0.5 mg/L TDZ + 0.1 mg/L NAA, and its differentiation rate reached 91.32%. The optimal medium combination for adventitious shoot proliferation was WPM + 2 mg/L ZT + 0.5 mg/L NAA, for which the proliferation rate reached 95.32% and the proliferation coefficient reached 9.45. The optimal medium combination for rooting from adventitious shoots was WPM + 0.1 mg/L NAA + 1 mg/L IBA, and its rooting rate reached 86.90%. The survival rates of the rooted regenerated plantlets exceeded 90% after acclimatization and transplantation. This regeneration system has the advantages of being simple and highly efficient, and it causes little damage to the shoots of the mother plants, laying a foundation for the plantlet propagation, genetic transformation, and new-variety breeding of R. decorum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.