Abstract
Clathrate hydrates are crystalline solids characterized by their ability to accommodate large quantities of guest molecules. Although CH4 and CO2 are the traditional guests found in natural systems, incorporating smaller molecules (e.g., H2) is challenging due to the need to apply higher pressures to stabilize the hydrogen-bonded network. Another critical limitation of hydrates is the slow nucleation and growth kinetics. Here, we show that specially designed activated carbon materials can surpass these obstacles by acting as nanoreactors promoting the nucleation and growth of H2 hydrates. The confinement effects in the inner cavities promote the massive growth of hydrogen hydrates at moderate temperatures, using pure water, with extremely fast kinetics and much lower pressures than the bulk system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.