Abstract

Staphylococcus aureus, a major human pathogen, has been the cause of serious infectious diseases with a high mortality rate. Although genetics is a key means to study S. aureus physiology, such as drug resistance and pathogenesis, genetic manipulation in S. aureus is always time-consuming and labor-intensive. Here we report a CRISPR/Cas9 system (pCasSA) for rapid and efficient genome editing, including gene deletion, insertion, and single-base substitution mutation in S. aureus. The designed pCasSA system is amenable to the assembly of spacers and repair arms by Golden Gate assembly and Gibson assembly, respectively, enabling rapid construction of the plasmids for editing. We further engineered the pCasSA system to be an efficient transcription inhibition system for gene knockdown and possible genome-wide screening. The development of the CRISPR/Cas9-mediated genome editing and transcription inhibition tools will dramatically accelerate drug-target exploration and drug development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.