Abstract

On-tissue chemical derivatization is a valuable tool for expanding compound coverage in untargeted metabolomic studies with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Applying multiple derivatization agents in parallel increases metabolite coverage even further but results in large and more complex datasets that can be challenging to analyze. In this work, we present a pipeline to provide rigorous annotations for on-tissue derivatized MSI data using Metaspace. To test and validate the pipeline, maize roots were used as a model system to obtain MSI datasets after chemical derivatization with four different reagents, Girard's T and P for carbonyl groups, coniferyl aldehyde for primary amines, and 2-picolylamine for carboxylic acids. Using this pipeline helped us annotate 631 unique metabolites from the CornCyc/BraChem database compared to 256 in the underivatized dataset, yet, at the same time, shortening the processing time compared to manual processing and providing robust and systematic scoring and annotation. We have also developed a method to remove false derivatized annotations, which can clean 5-25% of false derivatized annotations from the derivatized data, depending on the reagent. Taken together, our pipeline facilitates the use of broadly targeted spatial metabolomics using multiple derivatization reagents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.