Abstract
The rapid and accurate detection of diesel multiple properties is an important research topic in petrochemical industry that is conducive to diesel quality assessment and environmental pollution mitigation. To that end, this paper developed a new machine learning model for near infrared (NIR) spectroscopy capable of simultaneously determining diesel density, viscosity, freezing point, boiling point, cetane number and total aromatics. The model combined improved XY co-occurrence distance (ISPXY) and differential evolution-gray wolf optimization support vector machine (DEGWO-SVM) to attain the goal of rapidity and accuracy. Experimental results indicated that the average recovery, mean square error, mean absolute percentage error and determination coefficient of the presented method outperformed those of the existing machine learning methods. The proposed hybrid model provides superior solution to the problem of low efficiency and high cost of diesel quality detection, and has the potential to be utilized as a promising tool for diesel routine monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.