Abstract

Near-infrared (NIR) spectral-based classification of Aspergillus ochraceous contamination in the Robusta green coffee bean was investigated. Six different learning algorithms, including linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbors (KNN), decision tree (Tree), Naive Bayes (NB), and quadratic discriminant analysis (QDA), were applied for the investigating purpose. Four classes of fungal contamination on coffee beans, non-fungal contaminated beans on day 1 and day 3 (NCB-D1 and NCB-D3) and fungal contaminated beans on day 1 and day 3 (CB-D1 and CB-D3), were set for the classification intention. Based on the 6 learning algorithms, the Tree approach was optimal, displaying a training accuracy of 97.5%. As proven by the testing dataset, the classification accuracy of the Tree was also at 97.5%. With this number, the Tree could correctly classify 100% between the contaminated and non-contaminated coffee beans. These findings exhibit the potential of the NIR spectroscopy accompanied by machine learning for the early detection of fungal contamination in green coffee beans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.