Abstract

interaction between operating condition and plume shape complicates the analysis of such nozzles compared to traditional bell nozzles. A method that is based on Riemann interactions is proposed for the analysis of two such nozzle geometries. The method assumes two-dimensional geometries and supersonic flow. Unlike the method of characteristics, this method accounts explicitly for the presence of oblique shocks and curved shear layers. Comparisons to both experiment and computational fluid dynamics are shown. The solution method requires no grid generation and typically runs in less than a minute on a single desktop computer, which is ideal for conceptual design, control design, or control evaluation studies. It includes high-temperature gas modeling and finite-rate chemistry. Nomenclature A = area c = specific heat Ex = momentum conservation error H = height or length scale M = Mach number nexp = number of discrete waves in expansion nsp = number of species p = pressure r = length of characteristic R = normalized gas constant T = temperature u = magnitude of flow velocity W = molecular weight x, y = spatial coordinates Y = mass fraction = angle between wave and upstream flow = ratio of specific heats = deflection angle across a wave = angle of deflection caused by boundary layer = flowpath angle = momentum thickness = ratio of static pressures = Mach angle = Prandtl-Meyer angle = streamwise coordinate = density = angle between wave and x-axis ˙ ! = molar rate of production

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call