Abstract

In the present study, an analytical method using capillary electrophoresis with on-line preconcentration technique was developed for rapid determination of melamine in infant formula. Both stacking and sweeping preconcentration techniques had been investigated for the comparison of their effectiveness in melamine analysis. The limit of detection of melamine standard was 0.5 ng/mL for the field amplified sample stacking (FASS) technique and 9.2 ng/mL for the sweeping technique. Although the FASS technique provided better concentration efficacy than the sweeping technique, the matrix effect was more profound with the former. Matrix effect was evaluated by comparing the enhancement factor (EF) of melamine standard and post-extraction spiked infant formula solution. The EF was changed from 429.86 ± 9.81 to the level less than 133.31 with significant peak distortion in the FASS system, and it was remained unchanged in the sweeping system. Sweeping-micellar electrokinetic chromatography (sweeping-MEKC) was demonstrated to be most suitable for real sample analysis. Under optimum sweeping-MEKC conditions, melamine content in infant formulas could be determined within 6 min. The developed solid phase extraction (SPE) procedures coupled with the sweeping-MEKC method was subjected to method validation. Run-to-run repeatability ( n = 3) and day-to-day reproducibility ( n = 3) of peak area were within 3.6% and 4.8% RSD, respectively. The accuracy was tested by spiking 0.5 and 2 μg/mL of melamine standard in the melamine contaminated milk powder provided by the European Commission, and the recoveries were 93.4 ± 0.5% and 98.7 ± 0.4%, respectively. Results of this study show a great potential for the sweeping-MEKC method as a tool for the fast screening of melamine in infant formulas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.