Abstract
Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.