Abstract
Rapid transient liquid phase (TLP) bonding process on Ag/Sn/Ag system is achieved in air by the assistance of ultrasonic, which has great potential to be applied to high-temperature power devices packaging. In this study, the influence of ultrasonic effect on the morphology and growth kinetics of Ag3Sn grains, and the joint microstructure, mechanical property and thermal reliability were systematically investigated. Experimental results indicated that the rapid consumption of the “dynamic” transient liquid phase was attributed to the accelerated dissolution of Ag substrate and the extrusion of liquid Sn, which were entirely induced by the complex sonochemical effects on the liquid/solid intermetallic compounds (IMCs) interface. An elongated scallop-like morphology of Ag3Sn grains was developed during Ag/Sn interfacial reaction with ultrasonic, accompanied by widening of grooves between neighbored grains. This phenomenon is called as a strengthening thermal grooving, in which the grooves at grain boundaries provide stable molten channels for Ag atoms diffusion from the substrate. Consequently, the improved elemental diffusion was evaluated through the growth kinetics of Ag3Sn IMCs, with conservative estimation of 6–16.5 times faster than the traditional TLP process. In addition, both excellent mechanical property and thermal reliability of the Ag-Sn intermetallic joint were experimentally verified by shear test and high-temperature storage test, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.