Abstract
Cells are internally organized into compartmentalized organelles that execute specialized functions. To understand the functions of individual organelles and their regulations, it is critical to resolve the compositions of individual organelles, which relies on a rapid and efficient isolation method for specific organellar populations. Here, we introduce a robust affinity purification method for rapid isolation of intracellular organelles (e.g. lysosomes, mitochondria and peroxisomes) by taking advantage of the extraordinarily high affinity between the twin strep tag and streptavidin variants. With this method, we can isolate desired organelles with high purity and yield in 3 min from the post-nuclear supernatant of mammalian cells or less than 8 min for the whole purification process. Using lysosomes as an example, we show that the rapid procedure is especially useful for studying transient and fast cellular activities, such as organelle-initiated signaling and organellar contents of small-molecular metabolites. Therefore, our method offers a powerful tool to dissect spatiotemporal regulation and functions of intracellular organelles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.