Abstract

Rapid performance prediction tools are required for the evaluation, optimization, and comparison of different wind propulsion systems (WPSs). These tools should capture viscous aerodynamic flow effects in 3D, particularly the maximum propulsion force, stall angles, and interaction effects between the lift-generating units. This paper presents a rapid aerodynamic calculation method for wing sails that combines a semi-empirical lifting line model with a potential flow-based interaction model to account for 3D interaction effects. The method was applied to a WPS that consisted of several wing sails with considerable interaction effects. The results were compared to CFD RANS simulations in 2D and in 3D. For the evaluated validation cases, the interaction model improved the prediction considerably compared to when the interaction was not accounted for. The method provided acceptable driving force, moments, and stall predictions, with negligible computational cost compared to 3D CFD simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call