Abstract

Uniform well-crystallized flower-like BiOI nanoplates contained 3.7 nm mesopores, which may be attributed to the internanosheet spaces of BiOI with maximum pore diameters of about 30 nm, were successfully synthesized via a simple ethylene glycol-assisted solvothermal method. The as-prepared porous BiOI nanoplates exhibited excellent adsorption ability, and the saturated extent of adsorption of BiOI over an RhB solution was as high as 197 mg/g, which is much higher than those for BiOCl and BiOBr prepared via the same method and with a similar surface area. The probable adsorption mechanism could have originated from the interaction between the I atom in BiOI and a proton in RhB at different pH values and temperatures. With visible light irradiation (λ > 420 nm), 80 % of the RhB was degraded in 4 h, while BiOI still demonstrated reasonably outstanding photocatalytic ability under green light (λ = 550 ± 15 nm) because of its low-energy gap (1.72 eV). The degradation test for BiOI under irradiation at λ = 550 ± 15 nm is an excellent achievement for field applications because the catalyst can be applied in solar irradiation to remove organic pollutants, which may be of great value BiOI complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.