Abstract

Contamination of water resources with organic substances like phenolic fungicides is undesirable due to the improvement of living standards, the huge production of chemicals, the heavy consumption of daily chemical products, and the growth of the population. In this study, Co-based zeolitic imidazole framework-67 (ZIF-67(Co)) was synthesized using the "one-pot method," and the best Co-based N-doped magnetic porous carbon (Co-NPC) was prepared by ZIF-67(Co) carbonization in an atmosphere of N2. The materials were tested using an X-ray diffractometer (XRD), scanning electron microscope (SEM), infrared spectroscopy (IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, and magnetization analysis. These characterizations indicated that the Co-NPC was successfully prepared. With the original morphology of ZIF-67(Co) crystals, the Co-NPC also has good porosity, magnetic properties, and a large specific surface area. In water, Co-NPC-800 has a good adsorption capacity for triclosan (TCS) and p-chloro-m-xylenol (PCMX), which are kinds of aromatic fungicides. The adsorption of Co-NPC-800 on both reached equilibrium within 3min, which is in accordance with the quasi-second-order kinetic model. At 298K, the maximum adsorption capacity of Co-NPC-800 for TCS and PCMX was 163 and 39mg·g-1, respectively. The adsorption of TCS and PCMX by Co-NPC-800 is a spontaneous endothermic process with reduced entropy. The combination of Co-NPC-800 and phenols come from multiple actions of electrostatic, π-π, and hydrogen bond effects. Moreover, Co-NPC-800 can be regenerated through simple washing and can be reused at least three times by a magnet. The Co-NPC-800 has good porosity, large specific surface area, comparable adsorption capacity, rapid adsorption time, so it could be broadly used in sewage treatments and other environmental fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.