Abstract

In this study we developed a new LC nanofractionation platform that combines a human cell (BG1.Luc) gene reporter assay with a high resolution mass spectrometer for the detection and identification of estrogenic and anti-estrogenic compounds in environmental waters. The selection of this assay was based on its high sensitivity and selectivity, which is required for environmental trace level detection. We modified an autosampler and controlled it with in-house developed software to collect fractions in the low second range in microtiter plates. This ensured that chromatographic separation was maintained and allowed straightforward hyphenation with the bioassay. After bioassay testing, bioassay chromatograms were reconstructed and directly correlated with MS chromatograms that were obtained in parallel. This enabled to pinpoint bioactives in the MS chromatogram within a single fractionation cycle and results in a significant increase in throughput compared to traditional EDA studies. The sensitivity of the platform was low enough for environmental waters (80nM for bisphenol A and 320pM and 3.2nM for estradiol and estriol, respectively). In addition, the ability of the platform to detect anti-estrogens was successfully demonstrated as well. Finally, real samples were analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.