Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) is a chromatin-associated enzyme that is activated by DNA strand breaks and catalyzes the transfer of ADP-ribose groups from NAD to itself and other nuclear proteins. Although caspase-mediated PARP-1 cleavage occurs during almost all forms of apoptosis, the contribution of PARP-1 activation and cleavage to this cell death process remains unclear. Using immortalized fibroblasts from wild-type (PARP-1+/+) and PARP-1 knockout (PARP-1−/−) mice, and a mouse neuroblastoma cell line (N18), the role that poly(ADP-ribosyl)ation plays in Sindbis virus (SV)-induced apoptosis was examined. Robust PARP-1 activation occurred in SV-infected cells prior to morphologic changes associated with apoptotic cell death and PARP-1 activity ceased simultaneously with caspase-3 activation and PARP-1 proteolysis. PARP-1 activity was maximal before detectable DNA fragmentation, but was absent when DNA damage was most intense. SV and staurosporine-induced cell death was delayed in fibroblasts lacking PARP-1 activity, suggesting that PARP-1 activation contributes to apoptotic cell death induced by these stimuli. SV replication was not affected by lack of PARP-1 activity, but DNA fragmentation and caspase-3 activation were delayed and occurred at lower levels in PARP-1-deficient fibroblasts. Early virus-induced PARP-1 activation may represent a novel way by which cells signal to the nucleus to regulate protein function by poly(ADP-ribosyl)ation in response to virus infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.