Abstract

Oestradiol (E2) exerts critical homeostatic feedback effects upon gonadotropin-releasing hormone (GnRH) neurons to maintain fertility. In the female, E2 has both negative and positive feedback actions to suppress and stimulate GnRH neuron activity at different times of the ovarian cycle. This review summarizes reported rapid E2 effects on native embryonic and adult GnRH neurons and attempts to put them into a physiological perspective. Oestrogen has been shown to rapidly modulate multiple processes in embryonic and adult GnRH neurons including intracellular calcium levels, electrical activity and specific second messenger pathways, as well as GnRH secretion itself. Evaluation of in vivo data suggests that there is no essential role for rapid E2 actions in the positive feedback mechanism but that they may comprise part of the negative feedback pathway. Adult GnRH neurons are only likely to be exposed to E2 from the gonads via the circulation with appropriate physiological E2 concentrations in the rodent being 10-50 pM for negative feedback ranging up to 400 pM for positive feedback. Although most studies to date have examined the effects of supraphysiological E2 levels on GnRH neurons, there is accumulating evidence that rapid E2 actions may have a physiological role in suppressing GnRH neuron activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.