Abstract

Few studies have focused on metabolite diffusion in the human brain using 1 H-MRS due to significant technical challenges. Moreover, such studies have required lengthy acquisition times and are therefore impractical to implement clinically. By first characterizing and then minimizing the effects of linear and oscillating eddy currents, which arise from the diffusion gradients, and by implementing phase-cycle and slice-order strategies, as well as introducing a new phase-alignment methodology, we report a method that allows data acquisition requiring 20 seconds per spectrum. This remained feasible, even for b-values >8000 s/mm2 , with a rapid acquisition diffusion MRS methodology. It has allowed the nonlinear characterization of signal intensity with multiple b-values, and has improved the measurement of rotationally invariant diffusion parameters via six-direction, six b-value diffusion tensor spectroscopy (DTS) in 12 minutes at 4.7 T. The shorter DTS acquisition will enable its application to white matter regions not aligned with the gradients and permit clinical studies in a feasible time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.