Abstract

Abstract Following a tidal disruption event (TDE), the accretion rate can evolve from quiescent to near-Eddington levels and back over timescales of months to years. This provides a unique opportunity to study the formation and evolution of the accretion flow around supermassive black holes (SMBHs). We present 2 yr of multiwavelength monitoring observations of the TDE AT2018fyk at X-ray, UV, optical, and radio wavelengths. We identify three distinct accretion states and two state transitions between them. These appear remarkably similar to the behavior of stellar-mass black holes in outburst. The X-ray spectral properties show a transition from a soft (thermal-dominated) to a hard (power-law-dominated) spectral state around L bol ∼ few × 10−2 L Edd and the strengthening of the corona over time ∼100–200 days after the UV/optical peak. Contemporaneously, the spectral energy distribution (in particular, the UV to X-ray spectral slope α ox) shows a pronounced softening as the outburst progresses. The X-ray timing properties also show a marked change, initially dominated by variability at long (>day) timescales, while a high-frequency (∼10−3 Hz) component emerges after the transition into the hard state. At late times (∼500 days after peak), a second accretion state transition occurs, from the hard into the quiescent state, as identified by the sudden collapse of the bolometric (X-ray+UV) emission to levels below 10−3.4 L Edd. Our findings illustrate that TDEs can be used to study the scale (in)variance of accretion processes in individual SMBHs. Consequently, they provide a new avenue to study accretion states over seven orders of magnitude in black hole mass, removing limitations inherent to commonly used ensemble studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.