Abstract

The construction of 2,2-disubstituted indolines has long presented a synthetic challenge without any general solutions. Herein, we report a robust protocol for the dearomative Meerwein-Eschenmoser-Claisen rearrangement of 3-indolyl alcohols that provides efficient access to 2-substituted and 2,2-disubstituted indolines. These versatile subunits are useful for natural product synthesis and medicinal chemistry. The title [3,3] sigmatropic rearrangement proceeds in generally excellent yield and transfers the C3-indolic alcohol chirality to the C2 position with high fidelity, thus providing a reliable method for the construction of enantioenriched 2,2-disubstituted indolines. The power of this methodology is demonstrated through the concise and strategically unique total synthesis of the marine natural product hinckdentine A, which features a dearomative Claisen rearrangement, a diastereocontrolled hydrogenation of the alkene product, a one-pot amide-to-oxime conversion using Vaska's complex, and a regioselective late-stage tribromination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call