Abstract

Adoptive T-cell transfer of in vitro cultured T cells derived from cancer patients with naturally developed immune responses has met with some success as an immunotherapeutic approach, although only a limited number of patients showed spontaneous immune responses. To find alternative ways, such as cancer-specific T-cell receptor (TCR) gene transfer, in preparation for sufficient numbers of antigen-specific T cells is an important issue in the field of adoptive T-cell therapy. Given the inherent disadvantage of alphabeta TCR transfer to other alphabeta T cells, namely the possible formation of mixed TCR heterodimers with endogenous alpha or beta TCR, we employed gammadelta T cells as a target for retroviral transfer of cancer-specific TCR and examined whether gammadelta T cells were useful as an alternative population for TCR transfer. Although retroviral transduction to gammadelta T cells with TCR alphabeta genes alone, isolated from a MAGE-A4(143-151)-specific alphabeta CD8(+) cytotoxic T lymphocyte (CTL) clone, did not provide sufficient affinity to recognize major histocompatibility (MHC)-peptide complexes due to the lack of CD8 co-receptor, gammadelta T cells co-transduced with TCR alphabeta and CD8 alphabeta genes acquired cytotoxicity against tumor cells and produced cytokines in both alphabeta- and gammadelta-TCR-dependent manners. Furthermore, alphabeta TCR and CD8-transduced gammadelta T cells, stimulated either through alphabeta TCR or gammadelta TCR, rapidly responded to target cells compared with conventional alphabeta T cells, reminiscent of gammadelta T cells. We propose alphabeta TCR-transduced gammadelta T cells as an alternative strategy for adoptive T-cell transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call