Abstract

In urethane-anesthetized rats with body temperature maintained at 39–40°C, electrical stimulation of raphe magnus/pallidus/parapyramidal region within 0.5 mm of the ventral medullary surface reduced arterial blood flow to the tail cutaneous bed (measured with a chronically implanted Doppler ultrasonic flowmeter) from 28±5 to 6±1 cm/s ( P<0.01), without changing mesenteric arterial blood flow, and with only small, variable changes in arterial pressure. Injection of bicuculline (50 pmol in 50 nl) at the same site reduced tail flow from 19±2 to 3±1 cm/s ( P<0.01), again without significantly changing mesenteric flow, but with a moderate increase in arterial pressure. When the rat was cooled to reduce basal tail blood flow, injection of muscimol (1 nmol in 100 nl) or GABA (100 nmol in 100 nl) into the raphe site restored tail blood flow to 93±4% of the pre-cooling level. These recordings are the first reported direct measurements of rat tail blood flow changes elicited by alteration of neuronal function in the brainstem. The rostral medullary raphe controls the tail cutaneous vascular bed in a relatively selective manner. Our findings add to evidence that raphe magnus/pallidus/parapyramidal neurons are involved in regulating cutaneous blood flow in response to changes in body temperature in the rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.