Abstract

Alien cytoplasms cause a wide range of phenotypic alterations in the nucleus-cytoplasm (NC) hybrids in the Triticeae. Nuclear genomes of timopheevii wheat (Triticum timopheevii and Triticum araraticum) are fully compatible with the cytoplasm of Aegilops squarrosa, while those of a majority of emmer or durum wheat cultivars and more than half the wild emmer wheats are incompatible, and a maternal 1D chromosome is required to restore seed viability and male fertility in the NC hybrids. A euploid NC hybrid of Triticum durum cv. Langdon with Ae. squarrosa cytoplasm produced by introgressing the NC compatibility (Ncc) gene from T. timopheevii was used to identify random amplified polymorphic DNA (RAPD) markers linked to it. After a survey of 200 random decamer primers, four markers were selected, all of which were completely linked in 64 individuals of a SB8 mapping population. One marker was derived from a single locus, while three others were from interspersed repetitive sequences. Also, the hybrid chromosomes and those of the parental T. durum had identical C-banding patterns. RAPD-PCR analysis of 65 accessions from wild and cultivated tetraploid wheat species showed the exclusive presence of the markers in timopheevii wheat. In conclusion, the chromosomal region flanking Ncc of T. timopheevii is highly conserved in the genome of this group of tetraploid wheats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.