Abstract
Toll-like receptor 4 (TLR4) signaling in tumor cells can promote tumor escape and tumor progression, for which TLR4-triggered resistance of tumor cells to apoptosis has been proposed as one of the mechanisms. Rapamycin is an immunosuppressant agent widely used for treatment of transplantation rejection and autoimmune diseases, and recently used for cancer therapy. However, the underlying mechanisms responsible for antitumor effects of rapamycin remain to be fully elucidated. Here we report that rapamycin can reverse TLR4-triggered resistance of colon cancer cells to oxaloplatin- or doxorubicin-induced apoptosis by disrupting Akt and subsequent NF-κB activation, suppressing upregulation of anti-apoptotic protein Bcl-xL. Furthermore, Akt/NF-κB inhibitors also reverses the apoptosis resistance, accordingly, Akt constitutive activation rescues NF-κB activation and Bcl-xL expression in rapamycin-pretreated colon cancer cells, suggesting Akt disruption is critical to the process. Therefore, rapamycin may abrogate TLR4-triggered tumor apoptosis resistance by inhibiting Akt/NF-κB pathways and Bcl-xL expression, providing experimental evidence for the anti-tumor effect of rapamycin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.