Abstract
Rapamycin (RAPA) strongly inhibits lymphocyte activation and proliferation, but does not affect most of the activation-related gene expression at the mRNA level. In order to understand the mechanism of action of RAPA and to gain further insights in lymphocyte signalling which is impaired by RAPA, we screened for RAPA-sensitive genes using differential hybridization. The expression of human aldolase A gene was found to be inducible during T and B cell activation, and the induction was repressed by RAPA at both the mRNA and enzymatic levels. The other two important immunosuppressants, cyclosporin A and FK506, also inhibited the mitogen-induced upregulation. However, none of these three drugs inhibited the constitutive expression. There was no fluctuation of aldolase A expression during the cell cycle, and RAPA failed to block the first cell cycle after synchronization in Jurkat cells. However, the second cycle was hampered by RAPA, and this was correlated with the inhibition of aldolase A expression during this later stage. Since aldolase A is a key enzyme in glycolysis and lymphocytes mainly depend on glycolysis for energy supply, the data from this study suggest that aldolase A might be one of the downstream targets of RAPA. The inhibition of the enzyme upregulation might deprive the cells of additional supply of energy, and prevent the cells from entering an optimal status for proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.