Abstract

Abstract Shooting skill in the NBA is typically measured by field goal percentage (FG%) – the number of makes out of the total number of shots. Even more advanced metrics like true shooting percentage are calculated by counting each player’s 2-point, 3-point, and free throw makes and misses, ignoring the spatiotemporal data now available (Kubatko et al. 2007). In this paper we aim to better characterize player shooting skill by introducing a new estimator based on post-shot release shot-make probabilities. Via the Rao-Blackwell theorem, we propose a shot-make probability model that conditions probability estimates on shot trajectory information, thereby reducing the variance of the new estimator relative to standard FG%. We obtain shooting information by using optical tracking data to estimate three factors for each shot: entry angle, shot depth, and left-right accuracy. Next we use these factors to model shot-make probabilities for all shots in the 2014–2015 season, and use these probabilities to produce a Rao-Blackwellized FG% estimator (RB-FG%) for each player. We demonstrate that RB-FG% is better than raw FG% at predicting 3-point shooting and true-shooting percentages. Overall, we find that conditioning shot-make probabilities on spatial trajectory information stabilizes inference of FG%, creating the potential to estimate shooting statistics earlier in a season than was previously possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.