Abstract
We approach the simultaneous localization and mapping problem by using an ultrasound sensor and wheel encoders on a mobile robot. The measurements are modeled to yield a conditionally linear model for all the map states. Moreover, we implement a Rao-Blackwellized particle smoother (RBPS) for jointly estimating the position of the robot and the map. The method is applied and successfully verified by experiments on a small Lego robot where ground truth was obtained by the use of a VICON real-time positioning system. The results show that the RBPS contributes with more robust estimates at the cost of computational complexity and memory usage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.