Abstract
Smoothing in state-space models amounts to computing the conditional distribution of the latent state trajectory, given observations, or expectations of functionals of the state trajectory with respect to this distribution. In recent years there has been an increased interest in Monte Carlo-based methods, often involving particle filters, for approximate smoothing in nonlinear and/or non-Gaussian state-space models. One such method is to approximate filter distributions using a particle filter and then to simulate, using backward kernels, a state trajectory backwards on the set of particles. We show that by simulating multiple realizations of the particle filter and adding a Metropolis-Hastings step, one obtains a Markov chain Monte Carlo scheme whose stationary distribution is the exact smoothing distribution. This procedure expands upon a similar one recently proposed by Andrieu, Doucet, Holenstein, and Whiteley. We also show that simulating multiple trajectories from each realization of the particle filter can be beneficial from a perspective of variance versus computation time, and illustrate this idea using two examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.