Abstract

The paper proposes a robust estimation method which implements, in cascade, two algorithms: (i) a Random Sample and Consensus (RANSAC) algorithm and (ii) a novel nonlinear prediction error estimator minimizing a cost function inspired by the mathematical definition of Gibbs entropy. The minimization of the nonlinear cost function allows to refine the Consensus Set found with standard RANSAC in order to reach optimal estimates of geometric transformation parameters under image stitching context. The method has been experimentally tested and compared with a standard RANSAC-MSAC algorithm where noticeable improvements are recorded in terms of computational complexity and quality of the stitching process, namely of the mean squared symmetric re-projection error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.