Abstract
The Computational Fluid Dynamic simulation of RANS equations over NLF(1)-0416, utilized by backward facing step, is investigated for enhancement of aerodynamic characteristics. This article concentrates on the effects of step location transition point and reattachment of separated flow by backward facing step on pressure distribution and skin friction coefficient and subsequently on lift and drag. Reynolds number (based on the free stream velocity and airfoil chord) is 2.0 million. The finite volume method has been employed to numerically solve the steady state compressible Reynolds Averaged Navier-Stokes (RANS) equations with second order Roe’s scheme. Steps at different chordwise locations are chosen on both suction and pressure sides of the airfoil in order to determine their effects on skin friction, lift, lift to drag ratio and near stall behavior. In specific cases decreasing in drag is achieved due to step point on the chord followed by transition inception. The results show that all stepped studied airfoil cases experienced higher drag in comparison with base airfoil. Lift to drag ratio enhancement is seen in step on pressure side while the step extended to leading edge, this effect increases. Based on the results, delaying stall in some cases with step on suction surface is concluded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.