Abstract

Accounting for propeller–wing interaction allows for the design of more efficient propeller aircraft through strategic propulsion integration. In this paper, the cruise drag of a wing with a propeller located in front of the wingtip is minimized using twist and airfoil-shape design variables. Reynolds-averaged Navier–Stokes computational fluid dynamics with an actuator-disk approach is used for the flow simulations, and a gradient-based algorithm is used for the optimization. Changing the rotation direction of the propeller and optimizing the twist and airfoil shapes of the wing are found to impact the aerodynamic performance significantly, as expected. However, optimizing the wing while accounting for the propeller slipstream during optimization provides little benefit over optimizing it without accounting for the propeller slipstream—a difference of less than one drag count.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call