Abstract

We consider the problem of computing a (1+?)-approximation to the minimum volume enclosing ellipsoid (MVEE) of a given set of m points in R n . Based on the idea of sequential minimal optimization (SMO) method, we develop a rank-two update algorithm. This algorithm computes an approximate solution to the dual optimization formulation of the MVEE problem, which updates only two weights of the dual variable at each iteration. We establish that this algorithm computes a (1+?)-approximation to MVEE in O(mn 3/?) operations and returns a core set of size O(n 2/?) for ??(0,1). In addition, we give an extension of this rank-two update algorithm. Computational experiments show the proposed algorithms are very efficient for solving large-scale problem with a high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.