Abstract
Attaining recombinant thermostable proteins is still a challenge for protein engineering. The complexity is the length of time and enormous efforts required to achieve the desired results. Present work proposes a novel and economic strategy of attaining protein thermostability by predicting site-specific mutations at the shortest possible time. The success of the approach can be attributed to Analytical Hierarchical Process and the outcome was a rationalized thermostable mutation(s) prediction tool- RankProt. Briefly the method involved ranking of 17 biophysical protein features as class predictors, derived from 127 pairs of thermostable and mesostable proteins. Among the 17 predictors, ionic interactions and main-chain to main-chain hydrogen bonds were the highest ranked features with eigen value of 0.091. The success of the tool was judged by multi-fold in silico validation tests and it achieved the prediction accuracy of 91% with AUC 0.927. Further, in vitro validation was carried out by predicting thermostabilizing mutations for mesostable Bacillus subtilis lipase and performing the predicted mutations by multi-site directed mutagenesis. The rationalized method was successful to render the lipase thermostable with optimum temperature stability and Tm increase by 20°C and 7°C respectively. Conclusively it can be said that it was the minimum number of mutations in comparison to the number of mutations incorporated to render Bacillus subtilis lipase thermostable, by directed evolution techniques. The present work shows that protein stabilizing mutations can be rationally designed by balancing the biophysical pleiotropy of proteins, in accordance to the selection pressure.
Highlights
Living things evolve naturally with mutation as the tool to survive in various selection pressures-such as extreme temperature
We presented a significant progress toward the design thermostable mutants
The novelty of this work was in using a multi criteria decision making method (AHP) in developing a tool to predict protein thermostabilising mutations based on prioritizing protein biophysical interaction as features as contributors of thermostability
Summary
Living things evolve naturally with mutation as the tool to survive in various selection pressures-such as extreme temperature. Though thermostable proteins have various industrial applications, culturing them in laboratory from their natural sources is a daunting task [1]. Spectrum of research efforts is on continuous expansion to attain protein thermostability. Multi criteria-ranking platform to attain protein thermostabilizing mutations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.