Abstract

We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix in some region of the complex plane. The proof makes use of standard facts from quadratic and semidefinite programming. Links are established between the Lyapunov matrix, rank-one linear matrix inequalities (LMI), and the Lagrange multiplier arising in duality theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.