Abstract

Receptor activator of nuclear factor-κB ligand (RANKL) promotes vascular calcification, while osteoprotegerin (OPG) opposes it by blocking RANKL activity. It remains unclear which vascular cell populations produce and secrete OPG/RANKL. This study characterizes the production of OPG/RANKL from human aortic endothelial and smooth muscle cells (HAECs and HASMCs) under various conditions. HAECs and HASMCs were exposed to inflammatory stimuli (tumor necrosis factor-α or hyperglycemia) or physiological levels of hemodynamic (cyclic) strain. After 72 h, both cells and supernatant media were harvested for assessment of OPG/RANKL production. Based on initial findings, the experiments involving HASMCs were then repeated in the presence of exogenous RANKL. OPG was produced and secreted by HASMCs and (to a considerably lesser degree) HAECs under basal conditions. Inflammatory stimuli upregulated OPG production in both cell populations. Cyclic strain significantly upregulated OPG production in HASMCs. Neither cell population produced RANKL. Exposing HASMCs to exogenous RANKL inhibited basal OPG production and completely abrogated the strain-mediated upregulation of OPG. These data suggest that HASMCs are a significant source of OPG within the vasculature but that RANKL, once present, downregulates this production and appears capable of preventing the “protective” upregulation of OPG seen with HASMCs exposed to physiological levels of cyclic strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.