Abstract
Sex-specific differences in bone integrity and properties are associated with age as well as the number and activity of cells involved in bone remodeling. The aim of this study was to investigate sex-specific differences in adhesion, proliferation, and differentiation of mouse bone marrow derived cells into osteoclasts. The adherent fraction of bone marrow- derived cells from 12-week-old male and female C57BL/6J mice were assessed for their adhesion, proliferation, and receptor activator of nuclear factor κB (RANKL)-induced differentiation into osteoclasts. Female bone marrow derived macrophages (BMDMs) displayed higher adhesion and proliferation ratio upon macrophage colony stimulating factor (M-CSF) (day 0) and M-CSF + RANKL (day 4) treatment, respectively. On the contrary, male BMDMs differentiated more efficiently into osteoclasts upon RANKL-treatment compared to females (day 5). To further understand these sex-specific differences at the gene expression level, BMDMs treated with M-CSF (day 0) and M-CSF + RANKL (day 4), were assessed for their differential expression of genes through RNA sequencing. M-CSF treatment resulted in 1106 differentially expressed genes, while RANKL-treatment gave 473 differentially expressed genes. Integrin, adhesion, and proliferation-associated genes were elevated in the M-CSF-treated female BMDMs. RANKL-treatment further enhanced the expression of the proliferation- associated genes, and of genes associated with inhibition of osteoclast differentiation in the females, while RANK-signaling-associated genes were upregulated in males. In conclusion, BMDM adhesion, proliferation and differentiation into osteoclasts are sex-specific and may be directed by the PI3K-Akt signaling pathway for proliferation, and the colony stimulating factor 1-receptor and the RANKLsignaling pathway for the differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.