Abstract
Ranking the spreading influence of nodes is crucial for developing strategies to control the spreading process on complex networks. In this letter, we define, for the first time, a remaining minimum degree (RMD) decomposition by removing the node(s) with the minimum degree iteratively. Based on the RMD decomposition, a weighted degree (WD) is presented by utilizing the RMD indices of the nearest neighbors of a node. WD assigns a weight to each degree of this node, which can distinguish the contribution of each degree to the spreading influence. Further, an extended weighted degree (EWD) centrality is proposed by extending the WD of the nearest neighbors of a node. Assuming that the spreading process on networks follows the Susceptible-Infectious-Recovered (SIR) model, we perform extensive experiments on a series of synthetic and real networks to comprehensively evaluate the performance of EWD and other eleven representative measures. The experimental results show that EWD is a relatively efficient measure in running efficiency, it exposes an advantage in accuracy in the networks with a relatively small degree heterogeneity, as well as exposes a competitive performance in resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.