Abstract

Pharmaceuticals in freshwater posed ecological risks to aquatic ecosystem, however, most risk assessments of pharmaceuticals were conducted at screening level, which were limited by the availability of the toxicity data. In this study, risks of 80 pharmaceuticals including 35 antibiotics, 13 antiviral drugs, 13 illicit drugs, and 19 antidepressants in surface water of Beijing were assessed with a proposed multilevel environmental risk optimization strategy. Target pharmaceuticals were detected in surface water samples with the detection frequency from 1.7 % to 100 % and the total concentrations from 31.1 ng/L to 2708 ng/L. Antiviral drugs were the dominant pharmaceuticals. Preliminary screening-level risk assessment indicated that 20 pharmaceuticals posed low to high risks with risk quotient from 0.14 (chloroquine diphosphate) to 27.8 (clarithromycin). Thirteen pharmaceuticals were recognized with low to high risks by an optimized risk assessment method. Of them, the refined probabilistic risk assessment of joint probability curves coupling with a quantitative structure activity relationship-interspecies correlation estimation (QSAR-ICE) model was applied. Clarithromycin, erythromycin and ofloxacin were identified to pose low risks with maximum risk products (RP) of 1.23 %, 0.41 % and 0.35 %, respectively, while 10 pharmaceuticals posed de minimis risks. Structural equation modeling disclosed that human land use and climate conditions influenced the risks of pharmaceuticals by indirectly influencing the concentrations of pharmaceuticals. The results indicated that the multilevel strategy coupling with QSAR–ICE model was appropriate and effective for screening priority pollutants, and the strategy can be used to prioritize pharmaceuticals and other emerging contaminants in the aquatic environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call