Abstract

The formation of beta-sheet domains in proteins involves five energetically important factors: the formation of networks of hydrogen bonds and hydrophobic faces, and the residue propensities, or preferences, to be found at the edges of the beta-sheet, to adopt the extended conformation, and to make contact with other residues. These relative energy contributions define a potential energy function. Here, we show how optimizing this potential energy function reveals the formation of hydrophobic faces as the utmost factor. The potential energy function was optimized to minimize the Z-scores of the native topologies among the exhaustive sets of over 400 different beta-sheets. These results corroborate with experimental data that showed the environment of a protein is an important modulator of beta-sheet folding. The contact propensities were found to be the least important, which could explain the poor predictive power of beta-strand alignment methods based on pair-wise contact matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.