Abstract
We present a new method for the constraint-based synthesis of termination arguments for linear loop programs based on linear ranking templates. Linear ranking templates are parametrized, well-founded relations such that an assignment to the parameters gives rise to a ranking function. This approach generalizes existing methods and enables us to use templates for many different ranking functions with affine-linear components. We discuss templates for multiphase, piecewise, and lexicographic ranking functions. Because these ranking templates require both strict and non-strict inequalities, we use Motzkin’s Transposition Theorem instead of Farkas Lemma to transform the generated ∃ ∀-constraint into an ∃-constraint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.