Abstract

An optimal probabilistic-planning algorithm solves a problem, usually modeled by a Markov decision process, by finding an optimal policy. In this paper, we study the k best policies problem. The problem is to find the k best policies of a discrete Markov decision process. The k best policies, k?>?1, cannot be found directly using dynamic programming. Naively, finding the k-th best policy can be Turing reduced to the optimal planning problem, but the number of problems queried in the naive algorithm is exponential in k. We show empirically that solving k best policies problem by using this reduction requires unreasonable amounts of time even when k?=?3. We then provide two new algorithms. The first is a complete algorithm, based on our theoretical contribution that the k-th best policy differs from the i-th policy, for some i?<?k, on exactly one state. The second is an approximate algorithm that skips many less useful policies. We show that both algorithms have good scalability. We also show that the approximate algorithms runs much faster and finds interesting, high-quality policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.